
Operating System concepts:

Introduction:
• Unix is written in C languages and it has Dedicate C shell for providing full-fledged

scripting of C languages in unix enviornment.
Processes, Child-Parent relationship
When we boot the system special process called scheduler or swapper is created with PID 0.
The swapper creates chiled called process dispatcher and swapper manages memory
allocation for process. Process dispatcher n ow create shell. From now onward all the
process create by us is chich of shell and decendent of dispatcher. Unix keeps track of all
the process in a data structure called the process table.
Forking Processes

• processes initiated or created by user can also create a children process.
• Fork is the function to create the child process that is duplicate of a parent process.
• Child process begin execution from fork function
•

Exercise:
1.
#include <stdio.h>
#include <unistd.h>

void main()
{
fork();
printf("hello world");
}

Process Identification:
• PID is assiciated with child process
• getpid() function return the process id of that process.

Example:
#include <stdio.h>
#include <unistd.h>

void main()
{
int pid;
pid=getpid();
printf("process id is %d", pid);
}

• getppid() function return the parent ID.
• Fork function return 0 for child process and child pid for parent process.

Example:
#include <stdio.h>

#include <unistd.h>

void main()
{
int x=fork();
//printf("hello world");
int pid,ppid;
pid=getpid();
ppid=getppid();
if (x==0) // Fork function return 0 for child process

{
printf("process id child %d \n", pid);
printf("process id child’s parent %d\n", ppid);
}

else
{
printf("process id parent %d \n", pid);
printf("process id parent’s parent %d\n", ppid);
}

}

• Orphan Process:
◦ When child process is in running state but its parent completed its execution then

child process is left as an orphan process The process dispatcher immediately
becomes the parent process of all such processes.

Example:
#include <stdio.h>
#include <unistd.h>

void main()
{
int x=fork();
if (x==0)

{
printf("child %d \n", getpid());
printf("child parent %d\n", getppid());
sleep(20);
printf("child %d \n", getpid());
printf("child parent %d\n", getppid());

}
else

{
printf("parent %d \n", getpid());
printf("parent's parent %d\n", getppid());
}

}
Zombie Process

Unix has a concept of zombie process that are dead but have not removed from the
PROCESS TABLE. Consider the example below:
#include<stdio.h>
#include<unistd.h>
void main()
{

if (fork() > 0)
{
printf("parent");
sleep(50);
}

}

Type ps -el command to see the status of zombie process:
 you will find <defunct> and z in the staus.

Sleeping Process: The second column of the process table always shows the status of the
process. (R for running O for orphan S for sleeping)

Process Syncronization:
1. Parent process should held up till child process complete its execution.
2. wait() funtion is used for this purpose.
3.parent process wait() till the signal for the completion of the child process.
4. Ideally parent process should wait for the child process to complete. So wait() can be
used to syncronise.
5.If there is no child for a process, wait() will return -1. If child is terminated child pid is
returned to parent. If child is is running then Parent process will go to suspended state.
6. If more than one child is there and if parent want to wait for all children then sleep can be
used for this purpose.
Assignment: Please verify above facts by writing the code.

Sharing data between processess using file.

#include<fcntl.h>
#include<stdio.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/wait.h>
void main()
{

int fp;
char chr='A';
int pid;
pid = fork();
if (pid == 0)
{

fp=open("abc", O_WRONLY, 0666);
printf("In child character is %c ", chr);

chr='B';
write(fp, &chr, 1);
printf("In child character after change %c", chr);

}
else
{

sleep(20);
wait((int*)0);
fp=open("abc", O_RDONLY);
read(fp, &chr,1);
printf("Character after parents reads is %c", chr);
close(fp);

}

} output: In child character is A In child character after change BCharacter after parents
reads is B

Important point in above code to learn.

1. learn about file handling open function and its parameter read and write function.

Sharing of File Descriptor
A file unlike variable is never duplicated.
FILE DESCRIPTOR TABLE of a file is shared with all the children of that parent who forked
the child and opened the file before forked.
So all the file opened in parent will also be opened in child.
If a file is opened then entry is made in the STSTEM FILE TABLE. File pointer and access
mode are stored in this table. This table is global table. So not only file its file descriptor
and access mode is shared between processes.

 Code:
#include<fcntl.h>
#include<stdio.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/wait.h>
void main()
{

int fp;
char buffer[10];
int pid;

 fp=open("abc", O_RDONLY);
pid = fork();
if (pid == 0)
{

printf("child process ID %d \n", getpid());
read(fp, buffer,10);
buffer[10]='\0';
printf("Child read: \n");

//printf(" child read again %s", buffer);
puts(buffer);
printf("Child exiting \n");

}
else
{

sleep(20);
read(fp, buffer, 10);
buffer[10]='\0';
printf("parent reading \n");
puts(buffer);
printf("parent exiting \n");

}

}

create a file abc, put some random data in it..
Output:

• High level file functions: fopen fread ftell fseek
#include<fcntl.h>
#include<stdio.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/wait.h>
void main()
{

FILE *fp;
char buffer[10];
int pid;

 fp=fopen("abc", "r");
pid = fork();
if (pid == 0)
{

printf("initial file pointer location %ld \n", ftell(fp));
fread(buffer, sizeof(buffer),1,fp);
buffer[10]='\0';
printf("Child read: %s \n", buffer);
printf("After child read, file pointer location %ld \n", ftell(fp));
printf("Child exiting \n");

}
else
{

sleep(20);
printf("initial parent file pointer location %ld \n", ftell(fp));

fread(buffer, sizeof(buffer),1,fp);
buffer[10]='\0';
printf("parent read: %s \n", buffer);
printf("After parent read, file pointer location %ld \n", ftell(fp));
printf("parent exiting \n");

}

}

THE EXEC FUNCTION:

how to compile C program in linux.
gcc -o <object filename> <source file name>
 ex: gcc -o p1 p1.c

• small program is simple and more beautiful. To develop complicated program there
is a mechanism to call other program from current program. We can chain many small
programs and develop the complicated program.

.
Execute a C program from another program.

P1.c
#include<stdio.h>
#include <unistd.h>

void main()
{

printf("before exec my id is %d \n", getpid());
printf("my parent id is %d \n", getppid());
printf("exec starts \n");

 execl("/home/ritesh-gce/Desktop/2020/os/operating-system/p2", "p2", (char *)0);
printf("this is not printed");

}

p2.c

#include<stdio.h>
#include <unistd.h>

void main()
{

printf("after exec my id is %d", getpid());
printf("parent id is %d", getppid());
printf("exec ends \n");

}
execute one by one: gcc -o p2 p2.c, gcc p1.c, ./a.out
Output:

• p2 is called from p1.
• Last line of program p1 will never executed. When p2 is called it is loaded in the

memory where p1 was placed. So control will never come to p1.
• Second parameter passed to execl can be divided. It can be considered as the

parameters for function called through execl function.
• The execution of p1 results into the execution of p2 in same memory space, same

process is in the execution for p1 and p2.
• The second parameter of execl function can be of more than one length. Below is the

program:
Main function arguments: argc argv
exec_p1_2.c

#include<stdio.h>
#include <unistd.h>

void main(int argc, char * argv[])
{

printf("after exec my id is %d", getpid());
printf("parent id is %d", getppid());
printf("Child is %s and its arguments are : %s %s", argv[0], argv[1], argv[2]);
printf("exec ends \n");

}

p2_2.c

#include<stdio.h>
#include <unistd.h>

void main(int argc, char * argv[])
{

printf("after exec my id is %d", getpid());
printf("parent id is %d", getppid());
printf("Child is %s and its arguments are : %s %s", argv[0], argv[1], argv[2]);
printf("exec ends \n");

}

How to run:
gcc -o p2_2 p2_2.c
gcc -o p1.out exec_p1_2.c

./p1.out /home/ritesh-gce/Desktop/2020/os/operating-system/p2_2 p2_2 Hello Unix

The execv() and execvp() Function.
execv(): In above example we have hard coded the parameter passed. If we want to change
the parameters we have to use execv() function. execv takes only two arguments, program
we want to execute and array of pointers that hold all the argumets.

execv.c
#include<stdio.h>
#include <unistd.h>

void main()

{

char *temp[3];
temp[0] = "ls";
temp[1] = "-l";
temp[2] = (char *) 0;
execv("/bin/ls", temp);
printf("this is not printed");

}

The execv() function takes only two parameters, the program we want to execute and the
array of pointers that holds all the parameter we want to passed.

Execvp() function

execvp.c

#include<stdio.h>
#include <unistd.h>

void main()

{

char *temp[4];
temp[0] = "/home/ritesh-gce/Desktop/2020/os/operating-system/p22";
temp[1] = "hello";
temp[2]= "unix";
temp[3] = (char *) 0;
printf("parent id is %d \n", getpid());
printf("parent id is %d \n", getppid());
execvp(temp[0], temp);
printf("this is not printed");
}

p2_2.c

#include<stdio.h>
#include <unistd.h>

void main(int argc, char * argv[])
{
printf("after exec my id is %d", getpid());
printf("parent id is %d", getppid());
printf("Child is %s and its arguments are : %s %s", argv[0], argv[1], argv[2]);
printf("exec ends \n");

}
output:

With execv(), the first argument is a path to the executable.

With execvp(), the first argument is a filename. It must be converted to a path
before it can used. This involves looking for the filename in all of the directories in
the PATH environment variable.

Execvp.c
#include<stdio.h>
#include <unistd.h>

void main()

{

char *temp[3];
temp[0] = "";
temp[1] = "-l";
temp[2] = (char *) 0;
printf("parent id is %d \n", getpid());
printf("parent id is %d \n", getppid());
execvp("ls", temp);
printf("this is not printed");

}

• execvp() uses PATH environmental variable to execute the commands.

The exec() function called through a fork().

